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1. Introduction

Quantum corrections to the superpotential of four-dimensional N = 1 supersymmetric

string vacua are interesting in theory and practice. Due to non-renormalisation of the su-

perpotential at the perturbative level, non-perturbative effects play, though exponentially

suppressed, a crucial role in that they can represent the leading-order contributions of cer-

tain couplings in the effective action. The revived recent interest, starting with [1 – 4], in

D-brane instanton effects has its origin precisely in this fact. So-called stringy or exotic D-

brane instantons wrapping cycles not necessarily populated by a spacetime-filling brane can

yield various types of perturbatively absent couplings in the effective action of phenomeno-

logical significance [1 – 31]. These are to be contrasted with conventional gauge instantons,

whose realisation as D-brane instantons was investigated in detail in [32, 33]. Ground-

breaking early work on D-brane instantons appeared in [34 – 37] including the computation

of certain multi-instanton effects in setups with extended supersymmetry [38 – 41].

Consider for definiteness an N = 1 supersymmetric orientifold compactification of

Type II string theory. The common lore is that for a Euclidean D-brane to correct the

superpotential it has to wrap a suitable BPS cycle of the compactification manifold whose
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BPS phase is aligned with that of the orientifold plane. The BPS condition guarantees that

the instanton is a volume minimizing representative of its homology class. In this sense

it constitutes a local minimum of the string action, thereby fulfilling the analogue of the

defining characteristic for gauge instantons.

In backgrounds where N = 1 as opposed to N = 2 supersymmetry is preserved locally

along the internal space, such as M-theory on G2 manifolds or heterotic compactifications,

Euclidean half-BPS objects break two of the four supercharges of the effective field theory,

and the associated Goldstone fermions θα enable the object to generate F-terms [42]. In

Type II orientifolds, due the local enhancement of supersymmetry from N = 1 to N = 2

away from the orientifold plane, BPS instantons generically carry four such universal Gold-

stinos, θα and τ α̇ [9 – 12]. For suitable instantons invariant under the orientifold action the

anti-chiral ones are projected out, and the way is paved, in principle, for the generation of a

superpotential. Instantons invariant under the orientifold projection in such a way that only

two Goldstinos θα survive are called O(1) instantons. Another important class of Euclidean

D-branes is given by gauge instantons, which wrap the same cycle as a spacetime filling

brane. Here the extra Goldstinos τ α̇ are needed to implement the ADHM constraints [32].

This can be generalised to instantons along a single spacetime filling D-brane even though

the associated U(1) gauge group has no field theoretic gauge instantons [21, 26]. In the

rest of this article we will be concerned with stringy instantons in the sense that they wrap

a cycle not populated by any other D-brane of the compactification.

The above stated conditions for superpotential contributions prompt two immediate

questions. First, what is the role of the much more generic BPS instantons in orientifold

models which are not invariant under the orientifold action, called U(1) instantons in the

sequel? Second, are BPS cycles the only source for corrections to the superpotential, or do

non-BPS instantons contribute as well?

In [17], an analysis of the first question was initiated. U(1)-instantons are best de-

scribed in the upstairs geometry where they are given by a pair of instantons wrapping the

cycle Ξ and its orientifold image Ξ′. As we will review in section 3.1, the original reason

to discard such U(1)-instantons, the two extra anti-chiral Goldstone modes τ α̇, does not

necessarily withstand closer scrutiny. In favourable circumstances, the coupling of the τ α̇

modes to other instanton zero modes in the instanton effective actions allows for their ab-

sorption in the instanton path integral, leaving us with two zero modes θα in the universal

sector. If the instanton really contributes to the superpotential depends on the absence

of extra other unliftable modes. For a rigid cycle, such extra zero modes can arise in the

sector between the instanton and its orientifold image or between the instanton and the

D-branes of the compactification. One of the results of [17] is that for U(1) instantons

of chiral intersection type with its orientifold image, global constraints always enforce the

presence of charged zero modes of the latter type.

This is unfortunate as it is precisely this chiral sector that is related also to the second

question regarding the role of non-BPS instantons. As we will review in some detail in

section 2.1, the BPS condition for cycles is known to depend on the closed string moduli.

BPS cycles can become marginally stable along lines of marginal stability in moduli space

and disappear upon passing this hypersurface. The above cycles wrapped by U(1) instan-
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tons of a chiral type are precisely of that form. Their study in the region of moduli space

where they exist as properly calibrated BPS cycles can thus give us some insights into

the role of non-BPS cycles. The reason is that by holomorphicity, the instanton induced

superpotential has to be of the same functional form on both sides of the line of marginal

stability. This was discussed in [25] for the special case of a line of threshold stability where

BPS cycles become marginally stable with respect to its constituents without necessarily

decaying across the hypersurface. Rather, another BPS state of the same charges forms

on the other side which can now contribute to the superpotential. U(1) instantons with

non-minimal intersection with its image are of this type.

Continuity of quantum corrections across lines of marginal stability despite jumps in

the responsible BPS spectrum is a known phenomenon in gauge and string theories with

N = 2 supersymmetry (see e.g. [43 – 46]). The closest analogue of instanton generated

superpotential terms in Type II orientifolds is given by instanton corrections to the hyper-

multiplet metric in the parent Type II compactifications [47].

In the present paper, with this motivation in mind, we revisit possible superpotential

contributions of a U(1) instanton Ξ with chiral intersection with its image Ξ̃. We show that,

while due to the presence of extra charged zero modes no single instanton contributions

are possible, these modes can be lifted in a multi-instanton process involving another two

O(1) instantons Ξ̃1 and Ξ̃2. Perturbing this system away from the line of marginal stability

for the U(1)-instanton and its image, on one side a multi-instanton involving a BPS bound

state between Ξ and Ξ′ takes over in generating a superpotential. On the other side, by

contrast, this BPS object does not exist. However, the additional instantons Ξ̃1 and Ξ̃2

conspire to form a different BPS bound state of the same total charge that contributes to

the superpotential.

We also discuss a slightly simpler multi-instanton configuration where at threshold all

extra fermionic zero modes are lifted, but no BPS object exists upon deforming the moduli.

This is consistent as even at threshold a superpotential contribution is impossible by the

vanishing integral over the bosonic moduli space. The way in which this non-BPS cycle

violates the BPS condition is somewhat subtle. Based on its associated effective field theory,

we argue that it is destabilised by linear F-term obstructions involving massive adjoint

fields in the open string sector. Before turning to the instanton analysis, in section 2.2 we

describe this mechanism in general as we find it interesting in itself. Along the way we

propose that D-brane instantons can lead to a quantum deformation of the BPS spectrum

of a compactification.

The detailed discussion of U(1) instantons, their bound states and decay in section 3

is given in the language of Euclidean D2-instantons of general Type IIA Calabi-Yau orien-

tifolds. To make sure we are not working on the empty set, we construct an example of the

configuration we have in mind on T 6/Z2 × Z
′
2. Due to its technical character we relegate

its presentation to appendix B.

Our results suggest that the class of instantons correcting the superpotential is larger

than commonly appreciated. To further demonstrate this, we translate the IIA setup of

section 3 into Type I compactifications in section 4. Here it is Euclidean D5-branes carrying

certain vector bundles that become relevant in addition to the usually studied D1-instanton
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corrections. The formation of bound states of our multi-instanton configuration can be

described quite explicitly in the language of extensions. Finally we also reconsider the

problem of vector-like intersections of a U(1) instanton and its image and analyse under

what conditions extra zero modes in the E − E′ sector are lifted. Some more technical

details can be found in appendix A. Section 5 contains our conclusions.

2. Decay of BPS states across lines of marginal stability

2.1 Bound state decay in absence of F-term obstructions

We begin by recalling some basic facts about (bound states of) BPS branes and their decay

which we will make frequent use of in this article. For a review and the standard references

on this vast and fascinating subject see e.g. [48].

Compactify Type IIA or IIB string theory on a Calabi-Yau threefold X. Supersym-

metric D-branes are given by topological A- or B-type branes, respectively, which are stable

in a suitable sense. Their notion is encoded in the concept of the Fukaya category and the

derived bounded category of coherent sheaves [49], respectively. In the geometric phase, the

relevant A-type branes are given by Lagrangian three-cycles,1 while at large volume B-type

branes can be thought of as holomorphic cycles carrying holomorphic bundles or sheaf the-

oretic generalisations thereof. Note that the definition of topological A- and B-type branes

involves the Kähler and complex structure moduli, respectively.

The BPS condition on the other hand comes in two parts. In order to preserve an

N = 1 subalgebra of the N = 2 supersymmetry preserved by the Calabi-Yau, topological

branes have to satisfy a stability criterion. For A-type branes, this is the special Lagrangian

condition [34], while in the B-type case the sheaves have to be stable with respect to a

suitably defined slope [52 – 54]. Associated with such BPS objects is a central charge Z,

which in the large volume regime reads

Z ≃
{ ∫

Π Ω A − type branes∫
X eJch(iF)

√
td(X) B − type branes

}
. (2.1)

Note that Z depends only on the complex structure Ω or the Kähler structure J for A-

or B-type branes, respectively. The quoted expression for B-type branes refers to branes

wrapping the whole of X and carrying a bundle with curvature F . The particular N = 1

supersymmetry preserved by the BPS brane is parameterised by the phase

ϕ = Arg(Z). (2.2)

In a configuration with several D-branes, a common N = 1 supersymmetry is only preserved

once all BPS phases are aligned. In Calabi-Yau orientifolds the orientifold plane singles

out a preferred N = 1 subalgebra, and in what follows we will set the associated reference

phase to 0.

The equation fixing the phase of BPS branes in agreement with the orientifold plane is

related to the D-flatness conditions of the four-dimensional effective field theory supported

1More generally, coisotropic branes in the sense of [50] (see also [51]).
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by spacetime-filling branes. For small deviations from a supersymmetric configuration,

|ϕ| ≪ 1, the breaking of N = 1 supersymmetry by non-aligned BPS states can be described

as spontaneous D-term breaking within the usual two-derivative supergravity framework.

Otherwise, higher derivative terms become non-negligible. In the above limit one can

identify the BPS phase with the Fayet-Iliopoulos term of the diagonal U(1) subgroup

associated with the D-brane theory,

2πα′ξ = ϕ. (2.3)

Consider for simplicity the abelian low-energy effective theory of a pair of BPS D-

branes Π1 and Π2 with n+ and n− chiral fields of positive and negative charge with respect

to U(1)1−U(1)2 [55]. Both BPS branes preserve the same N = 1 supersymmetry provided

the D-term

VD =
1

2g2
YM



∑

i

|qi||φ+
i |2 −

∑

j

|qj||φ−

j |2 − ξ




2

(2.4)

vanishes. For zero vacuum expectation values (VEVs) of the charged scalar fields, the

supersymmetry condition ξ = 0 singles out a real codimension 1 hypersurface in complex

or Kähler moduli space which we will denote by M0 in the sequel. On this locus, there

exists a BPS object with homological charges [Π1] + [Π2], given by Π1 ∪ Π2.

Deforming the respective moduli away from M0 generates an FI term ξ, and according

to its sign we enter into the regions of moduli space denoted by M− or M+. In M+ the

fields φ+
i , if present, are tachyonic and their condensation can trigger the formation of a

bound state which we denote by Π2#Π1. The existence of this bound state is guaranteed

only in a small neighbourhood away from M0. Likewise, in M−, condensation of φ−

i can

lead to formation of the BPS bound state Π1#Π2. The charge of each of these bound

states is again [Π1] + [Π2]. In the limit of sufficiently small deformations away from M0,

the FI terms (or BPS phases) of the constituent objects add up linearly upon bound state

formation.

We have to distinguish the following qualitatively different cases: If n+ = n− 6= 0, i.e.

for vector-like intersections, BPS bound states exist on either side of M0, which should

therefore be called, adopting the nomenclature of [56, 57], line of threshold stability. The

same is true for chiral intersections where 0 6= n+ 6= n− 6= 0. By contrast, the interesting

case of strictly chiral intersections with either n+ 6= 0 or n− 6= 0 leads to the genuine

decay of a BPS object, say the bound state Π2#Π1 in M+, as we pass the line of marginal

stability, where the Π1 ∪ Π2 is BPS. In general the representatives of a given homological

charge can meet several lines of marginal and/or threshold stability in moduli space.

For special Lagrangians, bound states are described geometrically by the connect sum

of their constituents [58], while for B-type branes bound state formation is encapsulated

in the distinguished triangles of the derived category [48]. For our purposes it is enough to

think of bound states as a non-split extension. For early work in this context see [59, 60].

We will adopt this viewpoint in section 4.
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2.2 (Non-)BPS bound states and F-term obstructions

1) Classical example.

In more general situations, F-terms can destabilise otherwise BPS objects or obstruct

the formation of BPS bound states. As an illustration consider the following simple

system of 3 single spacetime-filling BPS-branes Da, Db, Dc which are taken to be

suitable BPS A- or B-type branes, respectively. The associated field theory was

considered before in [61, 62] as a model of supersymmetry breaking. If all three

branes are calibrated with respect to the orientifold, the low-energy effective field

theory is N = 1 SYM with gauge group U(1)a×U(1)b×U(1)c (modulo one decoupled

overall U(1)). We assume that the charged matter content of the system is given just

by three chiral superfields Φ(−1a,1b), B(−1b,1c) and A(−1c,1a).

Starting from the situation where all three branes preserve the same N = 1 super-

symmetry as the orientifold, we are interested in the behaviour of the BPS-branes

upon infinitesimal deformations of the complex or Kähler structure, respectively. We

are considering only such deformations for which the brane Dc continues to preserve

the same N = 1 supersymmetry as the orientifold, i.e. the FI-term associated with

U(1)c vanishes, ξc = 0.

For sufficiently small deformations, the behaviour of the system is captured by the

scalar potential of the effective field theory,

V = VD + VF , (2.5)

where

VD ≃ 1

2g2
YM

(
(−|φ|2 + |A|2 − ξa)

2 + (|φ|2 − |B|2 − ξb)
2 + (|B|2 − |A|2)2

)
,

VF ≃ λ2 (|Φ|2|B|2 + |Φ|2|A|2 + |A|2|B|2). (2.6)

Here we consider, for simplicity, equal gauge couplings for all 3 branes. λ denotes the

Yukawa coupling appearing in the superpotential W = λΦBA, which we assume to

be non-vanishing.

Unbroken SUSY is possible only for −ξb = ξa = ξ ≤ 0, and the microscopic behaviour

of the branes in this regime is clear. Perturbing the system instead such that −ξb =

ξa = ξ > 0, we have the following non-SUSY minimum for perturbatively small values

of x = 2g2
YM λ2:

|A| = |B| =

√
2ξ

2 + x
, Φ = 0. (2.7)

F- and D-flatness are both broken as the F-term prevents the system from recombin-

ing into a D-flat configuration corresponding to |A| = |B| =
√

ξ.

To understand this, we first consider the hypothetical BPS-bound state Ψ due to

condensation of the tachyons A and B in absence of the F-term. It can be viewed as
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the result of first condensing A, leading to the intermediate state Y = Dc#Da, and

its subsequent combination with Db induced by the VEV of B,

Ψ = Db#Dc#Da. (2.8)

Due to the described linearity of the FI-terms in the limit of small deformations, the

would-be BPS bound state Ψ leads to a vanishing D-term, in agreement with the field

theory analysis for |A| = |B| =
√

ξ. It still hosts a massless chiral multiplet Φ playing

the role of a modulus, while the adjoint fields A, B have acquired D-term masses. But

the F-term W = λΦBA before bound state formation indicates that the modulus Φ

is actually ’obstructed’ at linear order in that it suffers from a tadpole W = λξΦ.

Together with the coupling λ
√

ξ Φ (δA + δB) to the massive fluctuations δA, δB this

tadpole leads, in the scalar potential, to destabilising terms linear in δA, δB. The

bound state Ψ is driven into a truly non-BPS state Ψ̃ of the same homological charge

which breaks both D- and F-flatness while minimizing the total action.

Geometrically, it is not completely obvious in which sense Ψ̃ violates the BPS con-

dition. We would like to argue that it is not just a calibrated cycle preserving the

wrong N = 1 subalgebra, but rather not calibrated at all. After all, for calibrated

cycles the BPS-phase depends only on the charges, see eq. (2.1). So we cannot form

another BPS bound state in the same homology class as Ψ but with a different BPS

phase. On the other hand, we see no indications that Ψ̃ ceases to satisfy the topolog-

ical brane, i.e. Lagrangian or holomorphicity, condition. Its violation should manifest

itself in extra closed moduli dependent F-terms in the effective action (see e.g. [63])

in addition to the matter potential. We therefore propose that Ψ̃ is a non-calibrated

A- or B-type brane, respectively. The presence of the destabilising superpotential

terms for the hypothetical cycle Ψ reflects the fact that the geometry does actually

not allow for a stable BPS cycle of this charge in this region of moduli space.

2) D-instanton generated F-term obstructions.

The above situation is an example of a ’classical’ obstruction of a BPS brane in that

the responsible F-terms arise at string tree-level. More generally such F-terms can

be induced by stringy effects due to D-brane instantons. Consider e.g. a system of

two BPS branes Da, Db with bifundamental matter Φ and a corresponding D-term

VD =
1

2g2
YM

(
|Φ|2 − ξ

)2
. (2.9)

Much like in the example before, the formation of a BPS bound state Ψ = Db#Da

for ξ > 0 can be obstructed e.g. by a quadratic F-term of the form

W = m Φ2. (2.10)

Such superpotential terms are generated by stringy D-brane instantons wrapping

suitable BPS cycles which intersect the D-branes [1, 3, 4]. In [18] this mechanism

was considered as a realisation of the Fayet model of spontaneous supersymmetry
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breaking. Our point of view here is that the D-brane instanton responsible for (2.10)

leads to a quantum deformation of the geometry in the sense that it induces a lin-

ear obstruction in the scalar potential for the massive adjoint Φ of the would-be

BPS bound state Db#Da. In the same spirit as in the above classical example the

BPS state Ψ is destabilised towards formation of a non-calibrated brane and thus

disappears from the quantum corrected BPS spectrum.

This quantum deformation of the BPS spectrum depends in an interesting way on the

global properties of the string compactification and not merely on the local details

of the geometry. The point is that the instanton inducing (2.10) might intersect in

addition some other D-branes. In this case there are extra charged fermionic zero

modes between the instanton and these other D-branes. They have to be absorbed by

bringing down from the instanton action their couplings, if present, to other modes

Φ̃i in the D-brane sector which do not arise at the intersection Da − Db. The cou-

pling (2.10) is modified to

W ′ ≃ Φ2 ×
∏

i

Φ̃i (2.11)

and need not destabilise the BPS bound state Db#Da (provided the operator
∏

i Φ̃i

does not take a non-zero VEV in the vacuum). It would be interesting to study this

effect further.

3. Chiral instanton recombination as a multi-instanton process

3.1 Definition of setup

After this preparation we finally turn to the analysis of superpotential contributions of four-

dimensional N = 1 Calabi-Yau orientifold compactifications [64, 65] from so-called U(1)

instantons, as defined in the introduction. These were first studied systematically in [17].

We discuss a prototypical configuration in the context of a Type IIA compactification on

a Calabi-Yau X modded out by the combined action Ωσ of worldsheet parity Ω and an

anti-holomorphic involution σ acting on X. The mirror symmetric Type IIB picture will

be described in section 4.

Let E and E′ denote a Euclidean D2-brane2 and its orientifold image wrapping the

special Lagrangian three-cycle Ξ and Ξ′, respectively. For simplicity we consider situations

with an intersection pattern of the type

[Ξ′ ∩ Ξ]+ = n+ = [ΠO6 ∩ Ξ]+, [Ξ′ ∩ Ξ]− = n− = [ΠO6 ∩ Ξ]−. (3.1)

After identification of the zero modes from open strings in the E − E and E′ − E′ sector,

the universal zero modes comprise the four bosonic modes xµ and their fermionic partners

θα and τ α̇. To avoid complications due to deformation zero modes, we assume Ξ and Ξ′

to be rigid.

2These are dubbed E2-instanton in the sequel.
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zero mode (QE)Qws
Multiplicity

m,m (2)1 ,(−2)−1
1
2 [Ξ′ ∩ Ξ + ΠO6 ∩ Ξ]+

µα̇ (−2)1/2
1
2 [Ξ′ ∩ Ξ + ΠO6 ∩ Ξ]+

µα (2)−1/2
1
2 [Ξ′ ∩ Ξ − ΠO6 ∩ Ξ]+

n, n (−2)1 ,(2)−1
1
2 [Ξ′ ∩ Ξ + ΠO6 ∩ Ξ]−

να̇ (2)1/2
1
2 [Ξ′ ∩ Ξ + ΠO6 ∩ Ξ]−

να (−2)−1/2
1
2 [Ξ′ ∩ Ξ − ΠO6 ∩ Ξ]−

Table 1: Charged zero modes at an E2 − E2′ intersection.

As we can read off from table 1, additional zero modes arise in the E−E′ sector (see [17]

for a derivation). Positive intersections give rise to the bosonic modes mE′E , mEE′ and the

anti-chiral fermion µα̇
EE′. The chiral fermionic modes µα

E′E are projected out by the orien-

tifold action. Negative intersections yield the corresponding modes in the conjugate repre-

sentation, i.e. bosonic modes nEE′, nE′E and anti-chiral fermion να̇
E′E. Note that the bosons

m and n correspond to the recombination moduli φ+
i and φ−

j in the notation of eq. (2.4).

a) Vector-like intersections.

Vector-like intersections of type n+ = n− = 1 were analysed in [17] and [25]. As found

in [17], the two extra Goldstone modes τ α̇ are in fact lifted through couplings in the in-

stanton effective action of the type m µα̇ τ α̇ − n να̇ τ α̇. Without additional couplings

that also lift the orthogonal combination of fermionic zero modes µα̇ and να̇, the

E −E′ system contributes at best to higher fermionic F-terms. This is the situation

e.g. for rigid factorisable three-cycles on toroidal orbifolds, where CFT computations

show that no lifting terms of the required form are present. More generally, there

can exist couplings in the instanton effective action of the type (MN)2 [25], where

M and N formally denote chiral superfields with the above bosonic and fermionic

components. These can lift the additional fermionic modes and induce superpoten-

tial contributions. Couplings of this type can be viewed as effective couplings derived

from trilinear interactions MΦN , where Φ denotes a massive adjoint superfield cor-

responding to a deformation modulus of the wrapped cycle which is obstructed at

second order. For non-zero, but finite mass of the adjoint integrating Φ out results in

the above quartic coupling which is suppressed by the inverse (mass)2. In this sense,

absence of the above couplings at the orbifold point reflects the fact that for rigid

cycles, all would-be adjoint scalars are projected out by the orbifold action so that

their mass formally is ∞.

Recall from section 2.1 that vector-like intersections are very special in that on both

sides of the line of marginal stability BPS objects with charge [E]+[E′] exist, at least

in a local neighbourhood. The respective BPS states E#E′ and E′#E correct the

superpotential on either side if and only if the E−E′ system does so on top of the line

of marginal stability [25]. The presence (or absence) of the above quartic couplings

is equivalent to rigidity (or not) of the combined objects E#E′ and E′#E and can

thus be verified geometrically. We will exploit this point further in section 4.2.
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b) Chiral intersections.

We now proceed to an analysis of chiral intersections with special emphasis on the

question how the superpotential behaves upon decay of BPS instanton bound states

across the line of marginal stability. For simplicity we stick to the situation n+ =

1, n− = 0. This case was considered in [17]. As opposed to the non-chiral intersection,

the following complication arises: In a globally defined string vacuum, the string

theoretic consistency conditions enforce the presence of extra charged fermionic zero

modes λi. These correspond to open strings between the instanton and one of the

D6-branes present in the model [66, 1, 3, 4]. These charged zero modes will be called

chiral excess modes in the sequel as they cancel the excess of U(1)E charge in the

instanton measure arising from the modes µα̇, whose CPT conjugated counterparts

µα are projected out. Indeed, the tadpole cancellation condition can be used to show

that the net total charge of such zero modes adds up to
∑

i

QE(λi) = −
∑

a

Na Ξ ◦ (Πa + Πa′) = −4 Ξ ◦ ΠO6 = 4. (3.2)

More details can be found in [17].

While there are many situations in agreement with this constraint conceivable, we

assume for simplicity there exists a single D6-brane wrapping some orientifold in-

variant3 sLag cycle Πa = Πa′ with Πa ◦ Ξ = 4 and corresponding zero modes λi
aE ,

i = 1, . . . 4. Note that each of these modes are identified with one of the modes in

the sector E′ − A.

Again, the two extra Goldstone modes τ α̇ are lifted through couplings in the in-

stanton effective action of the type m µα̇ τ α̇. The crucial question is whether or not

one can find couplings in the instanton effective action of E and E′ which allow us

to integrate out also the charged excess modes λi. One can convince oneself that

perturbatively in gs no such couplings can exist: The only possibility in agreement

with charge conservation would be couplings of the type m λi λj or generalisations

thereof containing additional products of open string fields. But due to the different

worldsheet chirality of the modes λi and m couplings of this type vanish, following a

classic N = 2 worldsheet argument [67]. By contrast, all purely chiral combinations

of the type m λi λj violate instanton U(1)E charge. It was concluded in [17] that a

single U(1) instanton pair of this chiral type cannot contribute to the superpotential.

3.2 Non-perturbative lifting of charged zero modes

By contrast, it might well happen that the charged excess modes are lifted through the

interaction with other D-brane instantons. In fact, D-brane instantons can induce su-

perpotential couplings in the worldvolume theory of other D6-branes which are forbidden

perturbatively [1 – 4]. The solution to the above problem would then be to invoke such cou-

plings involving the excess modes λi in the instanton effective action. The result will be a

3The assumption that Πa is invariant is not essential, and more general configurations are equally

possible. In case the D-brane a rather gives rise to a Sp(2) than to an O(1) gauge theory all intersection

numbers including a need to be divided by 2.

– 10 –



J
H
E
P
0
7
(
2
0
0
8
)
0
1
2

zero mode sector repr. multiplicity

m E − E′ (2E) [Ξ′ ∩ Ξ]+ = 1

m, µα̇ E − E′ (−2E) [Ξ′ ∩ Ξ]+ = 1

k1, κα
1 Ẽ1 − E (1 eE1

,−1E) [Ξ ∩ Ξ̃1]
+ = 1

k1, κα̇
1 Ẽ1 − E (1 eE1

, 1E) [Ξ ∩ Ξ̃1]
+ = 1

k2, κα
2 Ẽ2 − E (1 eE2

,−1E) [Ξ ∩ Ξ̃2]
+ = 1

k2, κα̇
2 Ẽ2 − E (1 eE2

, 1E) [Ξ ∩ Ξ̃2]
+ = 1

λi E − D6a (1E ,−1a) [Πa ∩ Ξ]+ = 4

λ̃i
1 Ẽ1 − D6a (1 eE1

, 1a) [Ξ̃1 ∩ Πa]
+ = 2

λ̃i
2 Ẽ2 − D6a (1 eE2

, 1a) [Ξ̃2 ∩ Πa]
+ = 2

Table 2: Summary of boundary changing zero modes.

multi-instanton contribution to the superpotential. A related discussion of multi-instanton

effects in non-chiral configurations has been given in [25]; for a recent treatment of different

aspects of multi-instantons see [30] and also [68].

In order to avoid the generation of even more charged excess modes we consider the

possible lifting via extra O(1) as opposed to U(1) instantons. As will become apparent, the

simplest possible such situation involves two more O(1) instantons Ẽ1 and Ẽ2 wrapping the

invariant cycles Ξ̃1 and Ξ̃2, respectively, with non-vanishing intersections being precisely

[Ξ̃1 ∩ Πa]
+ = 2 = [Ξ̃2 ∩ Πa]

+, [Ξ ∩ Ξ̃1]
+ = 1 = [Ξ ∩ Ξ̃2]

+. (3.3)

The situation is depicted in figure 1. In appendix B we construct an explicit example of

such a multi-instanton configuration on the toroidal orbifold T 6/Z2×Z
′
2. Each of the O(1)

instantons contributes, in the universal sector, the Goldstone modes x̃µ
i and θ̃α

i , and to

avoid extra deformation modes we assume the wrapped cycles are rigid. The Ẽ1 − D6a

and Ẽ2 − D6a sectors yield two charged fermionic zero modes each, λ̃i
1 and λ̃i

2. Given the

nature of the cycles Ξ̃1, Ξ̃2,Πa as invariant cycles, the intersection is actually vector-like,

but half the modes are projected out, leaving us again with a chiral spectrum.

There are also modes between the U(1) instanton and the two O(1) instantons, given

by (k1, κ
α
1 ) and their charge conjugate (k1, κ

α̇
1 ), and similarly for Ẽ2. Note that, in contrast

to the E − E′ sector, both the chiral and anti-chiral bosonic and fermionic fields survive

the orientifold projection here as this sector is not invariant under Ωσ.

We can now analyse the combined instanton effective action involving these fields. In

this section we start on the hypersurface in complex structure moduli space where the U(1)

instanton E is supersymmetric with respect to the orientifold plane. On this locus, the

bosonic modes are massless. The relevant parts of the effective action of the multi-instanton

effective action first include the couplings

S1 = Y1ij

(
κα

1 θ̃1α λ̃i
1 λj + k1λ̃

i
1 λj

)
+ (1 ↔ 2) (3.4)

involving the charged modes λi which we are trying to lift. For their computation see [8].
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Figure 1: Multi-instanton configuration involving two O(1) instantons.

A second class of couplings can be understood as coming from F-terms of the type

W ≃
2∑

i=1

M Ki Ki, (3.5)

where Ki formally denotes the superfield associated with the zero modes (ki, κ
α
i ) and

similarly for M .4 In components the fermionic terms are

S2 = L1

(
µα̇ κ1α̇ k1 + m κα̇

1 κ1α̇

)
+ L1m κα

1 κ1α + (1 ↔ 2), (3.6)

where we introduced the physical coupling constants L1, L2. These are related to the

holomorphic coupling constants l1 and l2 via (B.22) described in appendix B.

A third class of interactions consists of the couplings [17]

S3 = Cm (m µα̇ τ α̇) + Ck1
(κα̇

1 τ α̇ k1) + Ck2
(κα̇

2 τ α̇ k2). (3.7)

The bosonic fields furthermore enter the D-term for U(1)E in the usual way as

SD =
1

2g2
E

(2mm − k1k1 − k2k2 − ξ)2, (3.8)

where the gauge coupling of the instanton theory 1
g2

E

= 1
gs

VolE2

ℓ3s
induces an inverse scaling

with gs, as will become crucial later on.5 Besides, the F-term potential associated with the

4Recall, however, that the chiral fermion µα is projected out.
5The normalisation of the D-term is chosen such that the kinetic terms for all instanton modes scale as

1

2g2

E

. For conventions and their consequences for the vertex operators see [8].
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above trilinear couplings reads6

SF = l21|m k1|2 + l22|m k2|2 + |l1k2
1 + l2k

2
2|2. (3.9)

With the help of the above coupling terms we can indeed saturate all fermionic zero

modes other than the universal θα required for superpotential contributions of E. Con-

cretely, we pull down

Y1ij Y2kl × (κα
1 θ̃1α λ̃i

1 λj) (κα
2 θ̃2α λ̃k

2 λl) (3.10)

with i 6= k and j 6= l in the instanton path integral. The remaining fermionic modes can

be absorbed by the product

Ck1
Ck2

L1 L2 (k1 κ1 τ) (µ κ1 k1) (k2 κ2 τ) (µ κ2 k2). (3.11)

Schematically, we are left with the nonvanishing, finite bosonic integral

Y 2
1ij Y 2

2kl L1 L2

∫
dk1 dk1 dk2 dk2 dm dm |k1|2 |k2|2 exp(−SD − SF ). (3.12)

Instead of (3.11) we can also saturate the remaining fermionic modes by

(Cm)2 L1 L2 (m µ τ)2 m κ1 κ1 m κ2 κ2, (3.13)

which leads to the non-vanishing bosonic integral

Y 2
1ij Y 2

2kl L1 L2

∫
dk1 dk1 dk2 dk2 dm dm |m|4 exp(−SD − SF ). (3.14)

As a result of summing up all different channels, the multi-instanton BPS configuration

produces a non-vanishing contribution to the superpotential. The scale of this contribution

is set by the exponentiated classical instanton action,

W ≃ exp

(
−2π

ℓ3
s

(∫

Ξ

1

gs
Ω + iC3 +

∫

eΞ1

1

gs
Ω + iC3 +

∫

eΞ2

1

gs
Ω + iC3

))
. (3.15)

As in single instanton computations, this classical suppression factor is multiplied by

the exponentiated sum over all one-loop annulus diagrams with one end on the instantons

and one end on the D6-branes of the model,
∑

b Z ′
A(E2,D6b), together with the Möbius

amplitudes M ′(E2, O6) [1]. Here E2 = E, Ẽ1, Ẽ2 and the massless modes are excluded. As

an important consistency check, holomorphicity of the generated superpotential is ensured

by the cancellation of the non-holomorphicities in the physical couplings Li, Y1jk, Y2jk

appearing in (3.10), (3.11), (3.13), partially among one another and partially with the non-

holomorphic part of these one-loop amplitudes. More details are given in the context of

our concrete example at the end of appendix B.

Before proceeding we would like to notice that the simpler configuration consisting

of the U(1) instanton pair and only one O(1) instanton does not induce a superpotential.

6We thank Ofer Aharony for discussions in the course of which a mistake in an earlier version was

noticed.
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While for suitable intersection numbers the resulting effective action may contain the cou-

plings required to saturate all extra fermionic zero modes, the complex integral over the

bosonic modes contains now a monomial in makb and not in |m|a|k|b. It vanishes as a

result of the uncancelled relative phase. We will come back to this point at the end of the

next section.

3.3 (Non-)BPS bound states and contributions to the superpotential

(I) ξ > 0

Now we deform the complex structure of the Calabi-Yau manifold away from the line

of marginal stability M0 determined by ξ = 0 for the cycles Ξ and Ξ′. For simplicity

we assume we can take a path in complex moduli space along which the calibration

of the other D-branes remains unchanged.7

Due to the strictly chiral nature of the intersection of the cycle Ξ with its image

Ξ′, (3.20), it is possible only for deformations into M+ where ξ > 0 that Ξ and Ξ′

combine into a new special Lagrangian cycle

Y = E′#E (3.16)

with homological charge [E] + [E′] and which preserves the same N = 1 supersym-

metry as the orientifold. The bound state Y disappears from the spectrum of BPS

branes on the other side in complex moduli space, i.e in M−. It is therefore an

interesting question how the instanton-induced superpotential behaves as the line of

marginal stability is crossed.

Let us begin with small deformations leading to formation of the BPS bound state

Y . From the effective field theory point of view, the Fayet-Iliopoulos parameter ξ for

U(1)E becomes positive and renders the bosons m,m tachyonic. At the end of the

recombination process m,m have acquired a VEV such that D-flatness is preserved.

The fluctuation modes δm and δm become massive via the D-term, and so do the

fermions µα̇ and τ α̇ through the coupling 〈m〉µ τ . The VEV for m and m likewise

induces a mass term for the bosonic modes ki, ki and the fermions κα
i and κα̇

i .

The only massless modes of the multi-instanton system (besides xµ, θα and x̃µ
i ) are

the charged modes λi, λ̃j together with θ̃α
1 , θ̃α

2 . From general N = 2 worldsheet

arguments there should exist the six-point couplings

〈θ̃α
1 θ̃β

1 λ̃iλj λ̃kλl〉 + 1 ↔ 2. (3.17)

7This is not implying a continuous change of moduli, but is rather meant as a gedanken experiment

to analyse the system for different values of the complex structure moduli. In general the closed string

moduli may possess a non-trivial potential and not be free parameters. In particular, the instanton under

consideration induces a complex structure moduli dependence of the potential via its exponential. The

microscopic lifting of zero modes does not depend, however, on this backreaction of the instanton on the

geometry. For example if the instanton induced coupling involves products of open string fields, the complex

structure moduli will in general not be fixed by the instanton sector.
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The easiest way to see this is to put the vertex operators for the respective zero modes

in the following pictures,

〈V 1/2
1/2 (θ̃α

1 ) V
−1/2
3/2 (θ̃β

1 ) V
−1/2
−1/2 (λ̃i) V

−1/2
−1/2 (λj) V

−1/2
−1/2 (λ̃k) V

−1/2
−1/2 (λl)〉, (3.18)

where the superscript denotes the ghost picture and the subscript the worldsheet

U(1) charge. Pulling down these two couplings therefore saturates all extra fermionic

modes, and the instanton bound state (E′#E) ∪ Ẽ1 ∪ Ẽ2 contributes to the super-

potential.

There is an alternative way to describe the system by thinking of the instantons wrap-

ping the individual cycles Ξ,Ξ′, Ξ̃1 and Ξ̃2 before formation of the bound state Y in

the following way: As Ξ and Ξ′ are at non-supersymmetric angles, the open string

excitations describing the bosons m,m are tachyonic, while the ones corresponding to

ki, ki acquire positive (mass)2. From the quantisation of the open string modes it is

furthermore clear that in this picture, i.e. prior to condensation of m,m, all fermionic

modes remain massless. The instanton effective action for this system is obtained by

integrating out the bosonic non-zero modes and keeping only the couplings involving

the fermionic zero modes. In fact, non-zero instanton modes are strictly off-shell as it

is not possible, in absence of four-dimensional momentum, to write down a consistent

vertex operator for massive excitations. This is reflected in the usual procedure to

allow for the non-zero modes to appear only in the one-loop amplitudes.

The effective coupling replacing the interactions (3.6) and (3.7) upon integrating out

ki and ki become

S′ = µ κ1 κ1 τ + µ κ2 κ2 τ . (3.19)

These terms allow us to saturate all extra fermionic zero modes, reproducing the

conclusion that the instanton system contributes to the superpotential.

(II) ξ < 0

Now we deform the complex structure such as to enter the region M− of moduli space

where the special Lagrangian Y ceases to exist. However, as encoded already in the D-

term potential (3.21), E can recombine instead with the O(1) instantons on the cycles

Ξ̃1 or Ξ̃2. The D-term only fixes the combination |k1|2 + |k2|2 and leaves us with one

complex bosonic modulus consisting of the orthogonal combination as well as the rela-

tive phase between the complex fields k1 and k2. Both are fixed by the F-term in a D-

and F-flat manner. The non-zero VEV for k1 and k2 also renders the boson m massive.

All extra fermionic modes λ̃i, λj , κk and κl acquire a mass via their couplings to ki.

This shows how holomorphicity of the D-brane instanton induced superpotential is

maintained even in situations where specific BPS instantons disappear across lines of

marginal stability. In M+ the superpotential is corrected by instantons wrapping the

BPS configuration (E′#E)∪ Ẽ1∪ Ẽ2. It is a multi-instanton configuration with con-

stituents Ẽ1, Ẽ2 and the BPS bound state Y = E′#E. Along M0 this bound state
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Y meets a line of marginal stability, but the multi-instanton E ∪E′ ∪ Ẽ1 ∪ Ẽ2 is still

BPS and contributes to the superpotential. In M− the former BPS state Y = E′#E

has disappeared, but ther exists a new BPS state Ψ = Ẽ1#(E ∪E′)#Ẽ2 with charge

[E] + [E′] + [Ẽ1] + [Ẽ1]. The two additional instantons Ẽ1 and Ẽ2 required to lift the

fermionic zero modes for ξ = 0 conspire such that the number of BPS states of total

charge [E] + [E′] + [Ẽ1] + [Ẽ1] does not jump across the line of marginal stability.

To illustrate this connection further, it is instructive to analyse how a jump in the

BPS spectrum is correlated with a microscopic obstruction to a superpotential contri-

bution already at threshold. The simplest example would of course be just the U(1)

instanton and its image which cannot contribute due to extra charged modes. But

there are even more subtle obstructions to superpotential contributions in agreement

with a discontinuous BPS spectrum.

Consider the lifting of the charged zero modes by a single O(1) instanton wrapping

the cycle Ξ̃. In order to lift the additional 4 charged zero modes λ we require e.g.8

[Ξ̃1 ∩ Πa]
+ = 4, [Ξ ∩ Ξ̃1]

+ = 1. (3.20)

Such a setup is depicted in figure 2. The massless spectrum comprises 4 additional

charged zero modes λ̃ the bosonic and fermionic zero modes k and κα and their

conjugates and finally the universal zero modes x̃ and θ̃α of the O(1) instanton.

One observes the same couplings as in (3.4), (3.6) and (3.7), but the D-term and the

F-term now take the form

SD =
1

2g2
E

(2mm − kk − ξ)2, SF = l21
(
(k k)2 + |m k|2

)
. (3.21)

As before we can saturate all charged zero modes λ and λ̃ by pulling down

Yij Ykl × (καθ̃α λ̃i λj) (k λ̃k λl), (3.22)

while the remaining fermionic zero modes can be absorbed by

Ck Cm L (k κ τ) (µ κ k) (µ m τ). (3.23)

This leaves us with the bosonic integral

Y 4
ij Ck L

∫
dk dk dm dm |k|2 k2 m exp(−SD − SF ). (3.24)

Unlike in the previous case this vanishes after integrating over the relative phase

between m and k. Alternatively one can saturate all fermionic zero modes via the

couplings

C2
m L (m κ κ) (µ m τ)2 (3.25)

8Our results hold also true for different intersections in the E − eE sector.
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Figure 2: Multi-instanton configuration involving a single O(1) instanton.

leading to the bosonic integral

Y 4
ij C2

m L

∫
dk dk dm dm |m|2 k2 m exp(−SD − SF ). (3.26)

Again this integral vanishes and there are no superpotential contributions.

This is consistent with the behaviour of such an instanton configuration for a small de-

formation of the complex structure. The configuration is very similar to the D-brane

setup discussed in section 2.2. For sufficiently small deformations of the complex

structure the new stable geometric object is described by condensation of the bosonic

modes such that the potential V = SD + SF is minimized. For ξ < 0, this happens at

|k| =

√
− ξ

1 + a
, m = 0, (3.27)

where a = 2g2
E l ≪ 1. Note that this minmum breaks both D-flatness and F-flatness.

It corresponds to an instanton wrapping the bound state Ψ̃ of the cycle Ξ∪Ξ′ with Ξ̃.

This new multi-bound state Ψ̃ is truly non-BPS. As in section 2.2 a possible way to

think about Ψ̃ is as a deformation of the sLag Ψ defined as the would-be BPS bound

state formed by Ξ̃, Ξ and Ξ′ if the superpotential (3.5) were absent, i.e. l = 0. From

the field theory point of view, the tachyon k would condense as |k| =
√−ξ and the

excitation mode δk around this vacuum expectation value would be massive. 5Now

by switching on l 6= 0, m acquires a mass. The F-terms also induce a term linear in

the massive fields δk. This indicates that the system is unstable towards formation

of the metastable non-BPS state Ψ̃. In the spirit of the discussion at the end of

section 2.2, Ψ̃ is a non-calibrated Lagrangian three-cycle.
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Such a non-supersymmetric state is not expected to contribute to the superpotential,

thus on the line of margin stability ξ = 0 there should not be any contributions either.

This is in complete agreement with our previous analysis.

4. Superpotential contributions in type I theory

In this section we give the mirror dual description of instanton bound states for Type I

compactifications on a Calabi-Yau manifold X. This language is particularly useful to

illustrate the general ideas of section 3 in terms of very concrete and computable algebraic

objects. By translating the results of the previous section into Type I we will identify

a new class of instantons correcting the superpotential. By S-duality to heterotic com-

pactifications they map to bound states of worldsheet and NS5-brane instantons carrying

vector-bundles.

The building blocks of the Type I gauge sector are formed by stacks of Ma = Na × na

D9-branes wrapping X and carrying stable holomorphic vector bundles Va of rank na. In

addition we have to add their orientifold images, given by a D9-brane with the dual bundle

V ∨
a . The associated gauge group of each stack of D9-branes is U(Na). For pairs of such

magnetised D9-branes, bifundamental matter is counted by the cohomology groups

H i(X,Va ⊗ Vb), i = 1, 2, (4.1)

where i = 1 and i = 2 respectively refer to chiral and anti-chiral superfields transforming as

(Na, Nb). Replacing Va by its dual V ∨
a interchanges Na with the conjugate representation

Na. More background can be found in [69, 70]. We will be working in the large volume limit

where the BPS condition for the holomorphic bundles is given, in slight oversimplification,

by µ-stability together with

µJ(V ) = 0, µJ(V ) =
1

rk(V )

∫

X
J ∧ J ∧ c1(V ). (4.2)

Strictly speaking, BPS bundles are not described by the category of coherent sheaves, but

rather by its derived category [49]. The correct stability criterion differs from the above

even in the limit α′ → 0, where perturbative and worldsheet instanton corrections to the

definition of the µ-slope can be neglected [48, 71].

The superpotential receives corrections from Euclidean D1-branes wrapping holomor-

phic curves [72]. These are dual to the described O(1) instantons in Type IIA. In the sequel

it will be useful to model an E1 instanton wrapping the curve C as the sheaf O|C . For a

detailed description of E1-instantons in this language we refer the reader to [23].

One of the motivations for this work was to investigate whether the superpotential

also receives contributions from Euclidean D5-branes on X. Such E5-instantons without

additional gauge flux carry gauge group Sp(2) and therefore exhibit too many Goldstone

modes to contribute to the superpotential at least in a straightforward manner. Instead

we consider E5-instantons with non-vanishing worldvolume flux. Note that these are dual

in Type IIA theory to E2-instantons of U(1) type, which can meet lines of marginal or

threshold stability and were considered in the previous sections.
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zero mode QE Cohomology

m 2 H1(X,L2)

m, µα̇ −2 H2(X, (L∨)2)

n −2 H2(X,L2)

n, να̇ 2 H1(X, (L∨)2)

Table 3: Extension modes in L − L∨ sector.

Similarly to the IIA context, we begin with a configuration of BPS E5-instantons

carrying stable holomorphic bundles with zero slope, together with their orientifold image.

For practical reasons we will mostly focus on E5-branes endowed with complex line bundles

L (together with their image E5-branes with L∨). This can be generalised to bundles of

higher rank.

We are interested in studying the transition of this system, i.e. of the direct sum of

instanton bundles

Ṽ = L ⊕ L∨, (4.3)

to non-split extension bundles upon crossing a line of marginal stability in Kähler moduli

space. The two possible bound states V = L∨#L and U = L#L∨ can be thought of as the

extensions given by

0 → L → V → L∨ → 0 (4.4)

and

0 → L∨ → U → L → 0, (4.5)

respectively. Non-splitness and thus existence of the extensions V or U requires that the

groups Ext1X(L∨, L) = H1(X,L2) or Ext1X(L,L∨) = H1(X, (L∨)2) are non-zero, respec-

tively. A necessary condition for stability of a non-split extension is that the slope of the

bundle to the left be smaller than that of the extension bundle. In general this is not suffi-

cient yet, but for small enough deformations away from M0, i.e. for sufficiently small slope,

stability is expected on physical grounds (see also [60]). The recombination (or extension)

modes m,m or n, n in the L − L∨ sector triggering formation of V or U , respectively, are

summarized in table 3.

The direct sum Ṽ represents a BPS instanton along the real codimension 1 hypersurface

M0 in Kähler moduli space defined by µJ(L) = 0 = µJ(Ṽ ). Upon deforming J such that

µJ(L) < 0 we enter into M+ where the bound state V forms, while U can exists for

J ∈ M− defined by µJ(L) > 0.

In this language it is particularly obvious that objects of a given charge vector can

meet several lines of marginal/threshold stability in moduli space and that the type of

these hypersurfaces can vary. In our case this corresponds to the existence of two different

line bundles L1, L2 with

ch(L1) + ch(L∨
1 ) = ch(V ) = ch(L2) + ch(L∨

2 ), H1(X,L2
1) 6= 0 6= H1(X,L2

2). (4.6)
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Since chi(L
∨) = (−1)i chi(L) this only constrains ch2(L1) = ch2(L2) = 1

2ch2(V ). By

contrast, both the slope of Li and the index χ(L2
i ) depend on the odd Chern classes. It can

therefore happen that V meets a line of threshold stability with respect to L1, L
∨
1 for Kähler

class J1 and a line of marginal stability with respect to L2, L
∨
2 for a different Kähler class J2.

4.1 Lifting of chiral excess modes in a 2-instanton process

Consider now a tadpole free supersymmetric Type I compactification of the above type on

the locus J ∈ M0. As in Type IIA one can show that the charged zero modes of the BPS

E5-instanton carrying the direct sum bundle Ṽ with all D9-branes have total U(1)E charge

∑

a

Qa = −4χ(X,L2). (4.7)

This enforces the existence of chiral excess modes for non vector-like situations, i.e. when-

ever χ(X,L2) 6= 0.9 As before we turn to the simplest chiral case of h1(X,L2) = n+ =

1, h2(X,L2) = n− = 0. Eq. (4.7) can be satisfied by numerous possible configurations all

of which lead to similar conclusions.

For concreteness consider the case that there exists a single D9-brane with line bundle

W (together with its orientifold image with W∨) such that

λi ∈ H1(X,W ⊗ L) ≃ C
n+2, H2(X,W ⊗ L) ≃ C

n, (4.8)

λj ∈ H1(X,W∨ ⊗ L) ≃ C
n+2, H2(X,W∨ ⊗ L) ≃ C

n,

in agreement with (4.7). Let us focus on the minimal case with n = 0 where have precisely

two modes λi with charges (1W , 1E) and two λj in (−1W , 1E). In the Type IIA dual we

saw from general worldsheet arguments that no perturbative couplings in the instanton

effective action can lift these chiral excess modes. In the present context such couplings for

the system Ṽ on top of the line of marginal stability are forbidden by general properties of

the chiral ring structure. The present formalism allows us to follow the fate of these modes

upon formation of the bound state V . As detailed in appendix A, they necessarily survive as

vector-like modes of the new bound state. Clearly the two statements are equivalent as the

excess modes are expected to be lifted perturbatively in the recombined system precisely if

there exist couplings to the recombination moduli who acquire a VEV upon recombination.

On the other hand, the lifting of the chiral excess modes via two more O(1) instantons

is possible in a manner totally analogous to the IIA picture, so that we can be brief. We

need two more such E1-instantons wrapping the rigid holomorphic curves C1 and C2 with

a charged zero mode spectrum as given in table 4. The cohomology groups follow from the

general discussion in [23].

From Bott’s theorem applied to the P
1s C1, C2 this spectrum requires that

W |C1
= OC1

(−2), W |C2
= OC2

(2),

9This is not in conflict with the previous statement about the change of the intersection type of several

lines of marginal/threshold stability in moduli space. The definition of a quantum number U(1)E only

makes sense on top of a line of marginal stability for a chiral intersection as otherwise the BPS object is

actually of O(1) type and the charge of the zero modes trivially adds up to zero.

– 20 –



J
H
E
P
0
7
(
2
0
0
8
)
0
1
2

zero mode charge number Cohomology

λi (1W , 1E) 2 H1(X,W ⊗ L)

λj (−1W , 1E) 2 H1(X,W∨ ⊗ L)

λ̃i
1 −1W 2 H0(C1,W

∨|C1
(−1))

λ̃j
2 1W 2 H0(C2,W |C2

(−1))

ki, κ
α
i −1E 1 H0(Ci, L

∨|Ci
(−1))

ki, κ
α̇
i 1E 1 H1(Ci, L|Ci

(−1))

Table 4: Charged zero modes.

L|Ci
= OCi

(−1), i = 1, 2. (4.9)

The couplings we invoke to lift all extra fermionic zero modes are as in the IIA system.

e.g. it is possible to lift the excess modes λ ∈ H1(X,W ⊗L) through couplings of the form

〈κα (θE1)α λ λ̃〉. (4.10)

This Yukawa coupling corresponds to the map

H0(C1, L
∨|C1

(−1)) ⊗ H0(C1,W
∨|C1

(−1)) ⊗ H1(C1,W ⊗ L|C1
) → C, (4.11)

which is just the pairing

H0(C1,O) ⊗ H0(C1,O(1)) −→ H0(C1,O(1)). (4.12)

Note that in (4.11) only those modes λ ∈ H1(X,W ⊗L) contained in the group H1(C1,W⊗
L|C1

) can couple to κα (θE1)α and λ̃i, which are localised at C1. It is therefore to be checked

in concrete examples that all λi are indeed lifted.

Similarly, the analogue of the coupling (3.6), 〈ki µα̇ κα̇
i 〉, which is the CPT conjugate

version of the Yukawa coupling MKiKi, see eq. (3.5), corresponds to the map

H0(Ci, L
∨|Ci

(−1)) ⊗ H1(Ci, L
2|Ci

) ⊗ H0(Ci, L
∨|Ci

(−1)) → C. (4.13)

Due to the localisation of the field Ki on Ci, Ki ∈ H0(Ci, L
∨|Ci

(−1)), only the restriction

H1(Ci, L
2|Ci

) can participate in Yukawa couplings.

In situations where all required couplings are non-zero the multi-instanton configura-

tion on top of the line of marginal stability, J ∈ M0, yields a non-vanishing superpotential

contribution. The same conclusion holds for deformations away from M0 into M+ or M− .

e.g. we propose that for J ∈ M− the BPS instanton formed by Ṽ , C1 and C2 contributes to

the superpotential. The relevant BPS state Ψ is the bound state formed by the skyscraper

sheaves O|Ci
and the vector bundle L ⊕ L′

0 → O|C1
→ V1 → L ⊕ L′ → 0,

0 → O|C2
→ Ψ → V1 → 0. (4.14)

– 21 –



J
H
E
P
0
7
(
2
0
0
8
)
0
1
2

4.2 Instanton moduli

In this section we take a closer look at vector-like recombination processes associated with

lines of threshold stability [17, 25]. As summarized in section 3.1, superpotential contri-

butions of the system L ⊕ L∨ at threshold require the presence of quartic superpotential

couplings between the vector-like extension modes m and n. After recombination these

couplings lift otherwise massless moduli of the bound state which are inherited from the

recombination moduli of the wrong charge that acquire no VEV. A convenient way to

determine whether or not these couplings are present is therefore to compute the moduli

space of deformations of an instanton bound state described by the extension of two rigid

vector bundles.

For simplicity we consider the special case that L is a line bundle. The bundle moduli

of the self-dual vector bundle V = V ∨ are counted by H1(X,V ⊗ V ∗). For our extension

0 → L → V → L∨ → 0 (4.15)

H i(X,V ⊗ V ∗) is computed from the long exact sequence induced by

0 → L ⊗ V ∨ → V ⊗ V ∨ → L∨ ⊗ V ∨ → 0. (4.16)

In turn, H i(X,L ⊗ V ∨) is determined by the long exact sequence induced by

0 → L ⊗ L → L ⊗ V ∨ → L ⊗ L∨ → 0. (4.17)

This sequence is given by

0 → H0(X,L ⊗ L) → H0(X,L ⊗ V ∨) → H0(X,L ⊗ L∨)
f→

→ H1(X,L ⊗ L) → H1(X,L ⊗ V ∨) → H1(X,L ⊗ L∨) →
→ H2(X,L ⊗ L) → H2(X,L ⊗ V ∨) → H2(X,L ⊗ L∨) →
→ H3(X,L ⊗ L) → H3(X,L ⊗ V ∨) → H3(X,L ⊗ L∨) → 0.

Recall that we assume that there exists a hypersurface M0 in Kähler moduli space

where µ(L) = 0 and that there exist small deformations of the Kähler form J into the

region M+ where µ(L) < 0 < µ(L∨). This means that L is neither ample nor anti-ample.

In addition we assume that the extension V is non-split and V is stable for J ∈ M+ at

least for sufficiently small deformations of J away from M0.

As an immediate consequence of these assumptions H0(X,L2) = 0 = H3(X,L2) and

likewise for (L∨)2.10 Furthermore V ∨ ⊗ L is stable and of negative slope (since we are

working in the regime J ∈ M+) so that H0(X,L⊗V ∨) = 0. Finally, the third column just

contains H∗(X,L ⊗ L∨) = H∗(X,O) ≃ (C, 0, 0, C). The first line therefore implies that

the coboundary map f is an injection and thus of maximal rank 1. It follows that

h1(X,L ⊗ V ∨) = h1(X,L2) − 1, h2(X,L ⊗ V ∨) = h2(X,L2), (4.18)

h3(X,L ⊗ V ∨) = 1. (4.19)

10Recall that H0(X, L2) 6= 0 would imply the existence of a map O → L2, but since µ(L2) = 0 for

J ∈ M0 this would mean O = L2. The statement about H3(X, L2) = 0 follows by Serre duality from

H0(X, (L∨)2) = 0.
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The long exact sequence induced by (4.16) reads

0 → H0(X,V ∨ ⊗ L) → H0(X,V ⊗ V ∨) → H0(X,V ∨ ⊗ L∨)
h→

→ H1(X,V ∨ ⊗ L) → H1(X,V ⊗ V ∨) → H1(X,V ∨ ⊗ L∨)
g→

→ H2(X,V ∨ ⊗ L) → H2(X,V ⊗ V ∨) → H2(X,V ∨ ⊗ L∨) →
→ H3(X,V ∨ ⊗ L) → H3(X,V ⊗ V ∨) → H3(X,V ∨ ⊗ L∨) → 0.

Stability of V implies h0(X,V ⊗V ∨) = 1. Serre duality and the fact that V = V ∨ yield,

together with (4.19), that h0(X,V ∨⊗L∨) = h3(X,V ∨ ⊗L) = 1. Matching the dimensions

of the cohomology groups of the first line thus shows that the coboundary map h has to

be trivial. Finally the dimension of the moduli space of the extension bundle is given by

h1(X,V ⊗ V ∨) = (h1(X,L2) − 1) + h2(X,L2) − rank g = h2(X,V ⊗ V ∨), (4.20)

where the coboundary map g is given by the cup product with H1(X,L2),

H1(X,V ⊗ L∨) × H1(X,L2) −→ H2(X,V ⊗ L). (4.21)

Clearly, strictly chiral recombinations with h1(X,L2) = 1 and h2(X,L2) = 0 result in

bundles with no deformation moduli, while for all other cases moduli can in principle

remain. The number of remaining moduli involves in particular the rank of the map g,

which depends on the details of the line bundle in question. There are certainly situations

conceivable where g is not of maximal rank so that unlifted moduli remain. For the

minimal vector-like case where h1(X,L2) = 1 = h2(X,L2) this happens e.g. whenever the

localisation inside X of the various cohomology groups appearing in (4.21) does not allow for

a non-trivial map of this type. We leave the discussion of concrete examples for future work.

5. Discussion

The superpotential of four-dimensional Type II orientifold compactifications can receive

non-perturbative corrections not only from D-brane instantons invariant under the ori-

entifold action everywhere in moduli space, but also from objects that can become U(1)

instantons for certain values of the closed string moduli. In this article we have extended

our previous analysis [17] of the simplest possible type of U(1) instantons with chiral in-

tersection with the orientifold to multi-instanton processes involving in addition a certain

type of O(1) instantons. We have shown that the specific multi-instanton configuration

can yield superpotential contributions on top of its line of marginal stability. On the two

different sides of this hypersurface in moduli space, BPS (multi-)bound states of different

topology, but of the same total charge can form. Their contribution to the superpotential

guarantees its holomorphicity, as in the case of U(1) instantons with non-chiral intersection

analysed in [25]. The additional instantons in this multi-instanton configuration that allow

for the formation of BPS bound states are precisely of the type required for lifting all extra

zero modes on the line of marginal stability and leading to a non-zero bosonic integral,

and vice versa. To put tables round, this demonstrates explicitly how the possible decay of

a BPS instanton into a non-BPS one somewhere in moduli space is encoded in its micro-

scopic description at marginal stability in a consistent way to prevent a contribution to the
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superpotential. We have started with a pure U(1) instanton at a line of marginal stability.

To lift extra zero modes we have to add new instantons. But just when the resulting multi-

instanton is ready to contribute to the superpotential, the line of marginal stability has

turned into a line of threshold stability, and holomorphicity of the superpotential is ensured.

Another conclusion of our analysis is that even the class of relevant BPS objects is

larger than mostly considered. The multi-instanton setup with U(1) instantons maps to

Type I D5-brane instantons carrying holomorphic bundles and their bound states with

D1-instantons. These are in turn S-dual to bound states of magnetised heterotic NS5-

brane instantons and worldsheet instantons. Both what we called chiral and vector-like

setups involving these objects have to be analysed to compute the full superpotential. We

outlined how the presence of the required couplings in the instanton worldvolume action

can be determined with the help of standard algebraic techniques. It will be interesting to

check in concrete compactifications if these hitherto neglected instantons yield corrections

to reckon with. This is an important question not only in view of the destabilising effect

that instantons may have on four-dimensional string vacua.
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A. Absence of perturbative lifting of chiral excess modes

In this appendix we further substantiate the absence of non-perturbative couplings that

would lift the chiral excess modes λ in the context of U(1) instantons with chiral intersec-

tions with their orientifold image.

Consider the system of section 4.1 with intersection numbers h1(X,L2) = 1,

h2(X,L2) = 0. First we investigate if couplings of the type 〈mλiλj〉 can exist on the

locus J ∈ M0. For this purpose we recall that

m ∈ H2(X, (L∨)2), λi ∈ H1(X,W ⊗ L), λj ∈ H1(X,W∨ ⊗ L) (A.1)

with i = 1, 2 and j = 3, 4. The above Yukawa coupling would correspond to a map

H2(X, (L∨)2) × H1(X,W ⊗ L) × H1(X,W∨ ⊗ L) → C. (A.2)

While allowed by gauge invariance, such a map can obviously not exist in view of the degrees

of the cohomology groups. This is the analogue of the worldsheet argument discussed in

this context in [17] and reviewed in section 3.1. Rather we would need

H1(X, (L∨)2) × H1(X,W ⊗ L) × H1(X,W∨ ⊗ L) → H3(X,O) ≡ C, (A.3)
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but by assumption h1(X, (L∨)2) = 0.

The absence of couplings 〈mλiλj〉 at M0 is equivalent to the statement that the λ

modes survive as vector-like modes between the bound state V and the brane W as we

enter into M+. The relevant cohomology groups H∗(X,W ⊗ V ) follow from the short

exact sequence

0 → W ⊗ L → W ⊗ V → W ⊗ L∨ → 0 (A.4)

obtained by tensoring (4.4) with the bundle W . It induces the long exact sequence in

cohomology

0 → H0(X,W ⊗ L) → H0(X,W ⊗ V ) → H0(X,W ⊗ L∨) → (A.5)

→ H1(X,W ⊗ L) → H1(X,W ⊗ V ) → H1(X,W ⊗ L∨) → (A.6)

→ H2(X,W ⊗ L) → H2(X,W ⊗ V ) → H2(X,W ⊗ L∨) → (A.7)

→ H3(X,W ⊗ L) → H3(X,W ⊗ V ) → H3(X,W ⊗ L∨) → 0. (A.8)

Recall that for simplicity we take L to be a line bundle. By assumption, W is stable

and of zero slope for J ∈ M0 and also for small deformations of J into M+. Consequently,

H i(X,W ⊗L) = H i(X,W ⊗L∨) = 0 for i = 0, 3. Thus the first and third lines of the long

exact sequence are trivial and the sequence reduces to

0 → H1(X,W ⊗ L) ≡ C
n+2 → H1(X,W ⊗ V ) → H1(X,W ⊗ L∨) ≡ C

n f→
→ H2(X,W ⊗ L) ≡ C

n → H2(X,W ⊗ V ) → H2(X,W ⊗ L∨) ≡ C
n+2 → 0.

Here we used eq. (4.8) and Serre duality for W∨ ⊗ L. The minimal zero mode situation

corresponds to n = 0. It follows that

h1(X,W ⊗ V ) = (n + 2) + n − rk(f), (A.9)

h2(X,W ⊗ V ) = (n + 2) + n − rk(f), (A.10)

where the map f : H1(X,W ⊗ L∨) −→ H2(X,W ⊗ L) is given by multiplication with the

group H1(X,L2). It can therefore be, in principle, of any rank up to n, depending on the

concrete bundles. In any case we see that there always exist vector-like modes counted

by H1(X,W ⊗ V ), H2(X,W ⊗ V ), only some of which (namely the modes inherited from

H2(X,W ⊗L) and H2(X,W∨⊗L), which are of the wrong U(1)E charge compared to the

needed excess modes in H1(X,W ⊗L) and H1(X,W∨ ⊗L)) can be lifted by the extension

provided the map f is non-zero. In particular this means we can never lift the excess modes

counted by H1(X,W ⊗ L) and H1(X,W∨ ⊗ L).

One might wonder if there can exist couplings involving these vector-like zero modes

given by λi ∈ H1(X,W ⊗ V ) and λj ∈ H1(X,W∨ ⊗ V ). e.g. if W is a vector bundle with

moduli h ∈ H1(X,W ⊗W∨), one could consider couplings of the type 〈hλλ〉, corresponding

to a map

H1(X,W ⊗ V ) × H1(X,W ⊗ W∨) × H1(X,W∨ ⊗ V ) → H3(X,O) ≡ C. (A.11)
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As V ≃ V ∨ this map might exist. However, as discussed above, H1(X,W ⊗ V ) and

H1(X,W∨⊗V ) inherit their elements from H1(X,W ⊗L) and H1(X,W∨⊗L), and no map

H1(X,W ⊗ L) × H1(X,W ⊗ W∨) × H1(X,W∨ ⊗ L) → H3(X,O) ≡ C (A.12)

can exist.

B. Local multi-instanton setup on T 6/Z2 × Z′

2

In this appendix we present a local realization of the multi-instanton effect discussed in

the section 3 in a Type IIA compactification. As compactification manifold we choose

T 6/Z2 × Z
′
2 orientifold with Hodge numbers (h11, h12) = (3, 51) [73, 78] which is known to

exhibit rigid cycles.11 We adopt the notation of [73], where further details can be found.

The orbifold group is generated by θ and θ′ acting as reflection in the first and last two

tori, respectively.

Each sector, θ, θ′ and θθ′ exhibits 16 fixed points which after blowing up give rise to

additional two-cycles with the topology of P1. Apart from the usual non-rigid bulk cycles

ΠB
a = 4

3⊗

I=1

(nI
a[a

I ] + m̃I
a[b

I ]), (B.1)

defined in terms of the fundamental one-cycles [aI ], [bI ] of the I-th T 2 and the corresponding

wrapping numbers nI
a and m̃I

a = mI
a + βInI

a where βI = 0, 1/2 for rectangular and tilted

tori, respectively, the background also contains so-called g-twisted cycles

Πg
ij = [αg

ij ] × [(nIg , m̃Ig)]. (B.2)

Here i, j ∈ {1, 2, 3, 4}×{1, 2, 3, 4} labels one of the 16 blown-up fixed points of the orbifold

element g = θ, θ′, θθ′ ∈ Z2 × Z
′
2. These cycles are basically twice the product of the two

cycles of the corresponding P1 and the Ig invariant one cycle [(nIg , m̃Ig)], where Ig = 3, 1, 2

for g = θ, θ′, θθ′.

Cycles which are charged under all three twisted sectors are rigid and take the form

ΠF =
1

4
ΠB +

1

4



∑

i,j∈Sθ

ǫθ
ijΠ

θ
ij


+

1

4



∑

j,k∈Sθ′

ǫθ′

jkΠ
θ′

jk


+

1

4




∑

i,k∈Sθθ′

ǫθθ′

ik Πθθ′

ik


 . (B.3)

Here Sg denotes the set of fixed points that the rigid brane runs through in the g-twisted

sector. The ǫg
ij = ±1 correspond to the two different orientation the brane can wrap the

P1 and have to satisfy various consistency conditions [73].

The orientifold action ΩR on untwisted cycles takes the usual form

ΩR : [(n1, m̃1)(n2, m̃2)(n3, m̃3)] → [(n1,−m̃1)(n2,−m̃2)(n3,−m̃3)] (B.4)

11For a different orientifold background based on shift orbifolds giving rise to rigid cycles see [74].
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whereas the twisted cycles transform as

ΩR : αg
ij[(n

Ig , m̃Ig)] → −ηΩR ηΩRg αg
R(i)R(j)[(−nIg , m̃Ig )], (B.5)

where the reflection R leaves all fixed points of an untilted two-torus invariant and acts on

the fixed points in a tilted two-torus as

R(1) = 1, R(2) = 2, R(3) = 4, R(4) = 3. (B.6)

The orientifold charges ηΩRg = ±1 are subject to the constraint

ηΩR ηΩRθ ηΩRθ′ ηΩRθθ′ = −1. (B.7)

In our subsequent local setup we choose them to be

−ηΩR = ηΩRθ = ηΩRθθ′ = ηΩRθ′ = 1. (B.8)

In addition we assume all three tori to be tilted such that the orientifold planes are given by

ΠO6 = −[(2, 0̃)(2, 0̃)(2, 0̃)] − [(2, 0̃)(0, 1̃)(0, 1̃)] − 2[(0, 1̃)(2, 0̃)(0, 1̃)] − [(0, 1̃)(0, 1̃)(2, 0̃)].

The U(1)-instanton E wraps a bulk cycle of the form

ΠB
Ξ = [(−1, 0)(−1, 0)(−1, 0)] = [(−1,− 1̃

2
)(−1,− 1̃

2
)(−1,− 1̃

2
)] (B.9)

and passes through the origin in all three tori. Thus its whole homology class Ξ is given by

ΠF
Ξ =

1

4
ΠB

Ξ +
1

4

∑

i,jǫ(13)×(13)

εθ
ijΠ

θ
Ξ +

1

4

∑

j,kǫ(13)×(13)

εθ′

jkΠ
θ′
Ξ +

1

4

∑

i,kǫ(13)×(13)

εθθ′

ik Πθθ′
Ξ ,

Πθ
Ξ =

[(
(−1,− 1̃

2

)]
, Πθ′

Ξ =

[(
−1,− 1̃

2

)]
, Πθθ′

Ξ =

[(
−1,− 1̃

2

)]
. (B.10)

Its orientifold image takes the form

ΠF
Ξ′ =

1

4
ΠB

Ξ +
1

4

∑

i,jǫ(14)×(14)

εθ
ijΠ

θ
Ξ′ +

1

4

∑

j,kǫ(14)×(14)

εθ′

jkΠ
θ′

Ξ′ +
1

4

∑

i,kǫ(14)×(14)

εθθ′

ik Πθθ′

Ξ′ ,

ΠB
Ξ′ =

[(
−1,

1̃

2

)(
−1,

1̃

2

)(
−1,

1̃

2

)]
, (B.11)

Πθ
Ξ′ =

[(
(−1,

1̃

2

)]
, Πθ′

Ξ′ =

[(
−1,

1̃

2

)]
, Πθθ′

Ξ′ =

[(
−1,

1̃

2

)]
.

With the intersection formulae

ΠB
a ◦ ΠB

b = 4

3∏

i=1

(ni
am̃

i
b − ni

bm̃
i
a),

Πg
ij ◦ Πh

kl = 4δgh δik δjl(n
Ig
a m̃Ih

b − nIh

b m̃
Ig
a ) (B.12)
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it is easy to show that

ΠΞ′ ◦ ΠΞ = 1, ΠO6 ◦ ΠΞ = 1. (B.13)

As discussed in section 3.1 we need 4 additional charged zero modes between E and some

D-brane a. We choose the brane a wrapping the cycle

ΠF
a =

1

4
ΠB

a +
1

4

∑

i,jǫ(12)×(34)

εθ
ijΠ

θ
a +

1

4

∑

j,kǫ(12)×(34)

εθ′

jkΠ
θ′

a +
1

4

∑

i,kǫ(34)×(34)

εθθ′

ik Πθθ′

a (B.14)

with

ΠB
a = [(0, 1)(−4, 3)(−4, 3)] = [(0, 1̃)(−4, 1̃)(−4, 1̃)], (B.15)

Πθ
a = [(−4, 1̃)], Πθ′

a = [(0, 1̃)], Πθθ′
a = [(−4, 1̃)]. (B.16)

Note that in contrast to section 3.2 we choose the D-brane to be not invariant under the

orientifold action. Thus we additionally have to ensure ΠΞ ◦ Π′
a = 0 for its orientifold

image a′, which is indeed satisfied. In order to satisfy supersymmetry we choose the

complex structure moduli U I to be

U1 =
8

3
, U2 = 4 , U3 = 4 . (B.17)

As described in [17] the τ α̇- and µα̇-modes can be soaked up by the coupling mτ α̇µα̇ but

there is no way to absorb the charged zero modes λ unless we take into account additional

O(1)-instantons. Indeed there are two instantons satisfying the constraints (3.20). Their

homology classes are given by

ΠF
eΞ1

=
1

4
ΠB

eΞ1

+
1

4

∑

i,jǫ(12)×(12)

εθ
ijΠ

θ
eΞ1

+
1

4

∑

j,kǫ(12)×(12)

εθ′

jkΠ
θ′

eΞ1

+
1

4

∑

i,kǫ(12)×(12)

εθθ′

ik Πθθ′

eΞ1

, (B.18)

ΠF
eΞ2

=
1

4
ΠB

eΞ2

+
1

4

∑

i,jǫ(34)×(12)

εθ
ijΠ

θ
eΞ2

+
1

4

∑

j,kǫ(12)×(12)

εθ′

jkΠ
θ′

eΞ2

+
1

4

∑

i,kǫ(34)×(12)

εθθ′

ik Πθθ′

eΞ2

(B.19)

with

ΠB
eΞ1

= ΠB
eΞ2

= [(2,−1)(2,−1)(2,−1)] = [(2, 0̃)(2, 0̃)(2, 0̃)], (B.20)

Πθ
eΞ1

= Πθ
eΞ2

= [(2, 0̃)], Πθ′

eΞ1

= Πθ′

eΞ2

= [(2, 0̃)], Πθθ′

eΞ1

= Πθθ′

eΞ2

= [(2, 0̃)]. (B.21)

Note that both cycles are invariant under the orientifold action and are separated in the first

torus ensuring that the additional zero modes appearing in the Ẽ1−Ẽ2 sector become mas-

sive. Now it is possible to soak up all the zero modes via the couplings (3.4), (3.6) and (3.7).

Let us briefly discuss the holomorphicity of the superpotential based on this example.

The Yukawa couplings Li and Yi in (3.4) and (3.6), respectively take the form

Ykij = ykij

3∏

I=1

Γ
1

4

1+φI
Ea

,1−φI

EẼk
,1−φI

Ẽka

, Lk = lk

3∏

I=1

Γ
1

4

−φI
EE′

,φI

EẼk
,φI

EẼk

, (B.22)
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where φI
ij denotes the intersection angle between instanton i and brane or instanton j,

respectively and

Γα, β, γ =
Γ(1 − α) Γ(1 − β) Γ(1 − γ)

Γ(α)Γ(β)Γ(γ)
. (B.23)

The lowercase letters denote the holomorphic part of the Yukawa couplings, which es-

sentially are given by the world sheet contributions. Note that the dependence on φEẼk

in (3.12) and (3.14) drops out due to the inverse dependence of Y 2
ikl to Li. In addition there

are also non-holomorphic contributions from the annulus diagrams A(E, a) and A(Ẽk, a)

as well as the Möbius diagram M(E,O6) [1]. In our example they are given by [13, 75, 76]

exp(An.h.(E, a)) =

(
Γ(1 + φ1

Ea)Γ(1 + φ2
Ea)Γ(1 + φ3

Ea)

Γ(−φ1
Ea)Γ(−φ2

Ea)Γ(−φ3
Ea)

)
,

exp(An.h.(Ẽk, a)) =

(
Γ(φ1

Ẽka
)Γ(φ2

Ẽka
)Γ(φ3

Ẽka
)

Γ(1 − φ1
Ẽka

)Γ(1 − φ2
Ẽka

)Γ(1 − φ3
Ẽka

)

) 1

2

, (B.24)

exp(Mn.h.(E,O6)) =

(
Γ(−φ1

E′E)Γ(−φ2
E′E)Γ(−φ3

E′E)

Γ(1 + φ1
EE′)Γ(1 + φ2

EE′)Γ(1 + φ3
EE′

) 1

2

.

Indeed, after plugging (B.22) and (B.24) into (3.12) or (3.14) all angle dependence cancels

and one is left with a holomorphic expression for the superpotential.

Let us deform the complex structure in the first torus away from the line of marginal

stability. Note that under deformation of the complex structure U1, while keeping the

complex structures in the other two tori fixed, the brane a remains supersymmetric. For

U1 > 8/3 we induce a positive Fayet-Iliopoulus parameter ξ for the U(1)E and as described

in section 3.3 the cycles Ξ and Ξ′ combine into a new special Lagrangian Y = Ξ#Ξ′

preserving the same N = 1 supersymmetry as the orientifold. The whole multi-instanton

configuration is then given by (Ξ#Ξ′) ∪ Ξ̃1 ∪ Ξ̃2. For U1 < 8/3 we induce a negative ξ

for the U(1)E and the multi-instanton configuration recombines into the new BPS state

Ξ̃1#((Ξ ∪ Ξ′))#Ξ̃2.
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[2] M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and

D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211].
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[6] N. Akerblom, R. Blumenhagen, D. Lüst, E. Plauschinn and M. Schmidt-Sommerfeld,

Non-perturbative SQCD superpotentials from string instantons, JHEP 04 (2007) 076

[hep-th/0612132].

[7] M. Bianchi and E. Kiritsis, Non-perturbative and Flux superpotentials for type I strings on

the Z3 orbifold, Nucl. Phys. B 782 (2007) 26 [hep-th/0702015].
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